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FREE SURFACE FLOW DURING THE FILLING OF 
A CYLINDER 

Z. ABDULLAH AND M. SALCUDEAN 
Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1 W5 

SUMMARY 
A technique is proposed to model flows with free surfaces using the control volume method. The free surface 
is tracked by determining the locations of the ambient pressure in the domain. Special conditions are 
imposed on the nodes in the vicinity of the free surface. Flow visualization experiments are carried out to 
determine the free surface shapes and velocity distributions during the filling of a cylindrical container with 
water. Computations are carried out to model the flow in the experimental test case using a mesh 
transformation and the free surface treatment. The proposed free surface treatment yields results of better 
accuracy as compared with the results using the free slip condition. The predicted locations and heights of 
the spout are reasonable. 
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1. INTRODUCTION 

Free surface flows occur over a wide range of applications, e.g. in reservoirs, chemical reactors, 
moulds, ladles and tundishes. Modelling such flows poses considerable problems since the free 
surface profile has to be continuously tracked and the correct boundary conditions have to be 
applied at it. Flows during filling of moulds are even more difficult to simulate because the level of 
the fluid continuously rises, causing the boundaries of the computational domain to change 
spatially with time. 

were developed to treat 
free surface flows. The Courant time step limitation' applies to both the MAC and VOF 
techniques. This restriction does not cause any additional constraints when applied to explicit 
codes; however, an implicit scheme would lose its advantage if the Courant limitation were 
required for the surface treatment. This limitation becomes increasingly restrictive with mesh 
refinement. 

In the present work a new technique is proposed to model flows with free surfaces using the 
Control Volume Method.' -*  This technique is used with a new mesh transformation to simulate 
the filling of a cylindrical container with water. Flow visualization experiments are also carried 
out to verify the predicted free surface shapes and velocity distributions. 

The marker and cell (MAC) and volume of fluid (VOF) 

2. EXPERIMENTAL WORK 

The test section consists of a 0.121 m diameter plexiglass cylinder connected by a plastic hose with 
a quick-closing valve to a reservoir. The experimental conditions are isothermal. Water enters the 
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test section centrally from the bottom. The diameter of the inlet is 0.0121 m. Flow visualization is 
carried out by taking timed exposures of 0.001 m neutrally buoyant particles suspended in the 
fluid. A Stokes law analysis' has shown that the particles follow the fluid reasonably well. The 
smallest flow structure that can be resolved is about 0.01 m, an order of magnitude larger than the 
particle size." A 0.01 m thick vertical light plane passing through the axis of the cylinder is 
produced using a slide projector and an opaque slide with a 2 mm by 20 mm slit. Photographs are 
taken with a Yashika FE 35 mm camera with a 50 mm lens. Black and white 125ASA film is used 
and the photographs are developed to the actual size. Further details about the experimental 
work may be found in Reference 9. 

3. MATHEMATICAL MODELLING 

The flow enters centrally from the bottom of the test section in the form of a turbulent jet,"-14 
since the Reynolds number based on the orifice diameter and average fluid velocity is 2500. In the 
present work turbulence is simulated by the K--E m0de1.I~ 

The conservation equations of mass, momentum and turbulence parameters are well 
k n ~ w n ' ~ * ' ~ ~ ' ~  in the primitive variable form and discretized using the Control Volume Method. 
A hybrid central/upwind scheme is used with the SIMPLE The level of the fluid rises 
continuously during filling. A co-ordinate transformation is employed to continuously conform 
the mesh to the region of the domain which mostly contains the fluid. This hybrid Eulerian- 
Lagrangian technique enables the mesh to 'expand' axially and conform to the rising level of the 
fluid. The method is similar to the approach of Watkins,I7 who employed a co-ordinate 
transformation to compute flows in an engine cylinder. Watkins' technique is not applicable to 
the problem under consideration because of the need to model the free surface. The transforma- 
tion developed in this study allows only that part of the domain to expand which contains the 
fluid. This additional flexibility is required because the region of the domain reserved for the 
treatment of the free surface does not expand during filling. 

3.1. Computational domain and mesh 

Figure 1 shows the computational domain. The west boundary of the domain corresponds to 
the bottom surface of the cylinder, the north boundary corresponds to the side walls and the 
south boundary corresponds to the axis of symmetry. The computational domain is divided into 
two regions, the Juid region and the free surface region. 

Thefluid region, for which a= 1, models that part of the cylinder which is completely occupied 
by the fluid. The control volumes in the fluid region are assumed to be completely occupied by the 
fluid at all times. The mesh in the fluid region expands axially (along the west-east direction) to 
simulate the increasing volume of the fluid during the filling of the cylinder. The 'height' of the 
fluid region ( x I )  is determined on the basis of initial conditions, inlet flow rate and the 
conservation of mass principle. 

Thefree surface region, for which a = 0, models the part of the cylinder which is partly occupied 
by the fluid and which is expected to contain the free surface. The control volumes in the free 
surface region can be 'empty', 'partly full' or 'completely full' of fluid, depending on the shape of 
the free surface. The mesh in the free surface region does not expand, in order to retain the 
resolution required to track the free surface shape. The axial dimension of the free surface region 
(x, - xI) is determined at the beginning by using the conservation of energy principle on the inlet 
momentum of the jet.' 

The computational domain is divided into a rectangular grid of cells (called control volumes) as 
shown in Figure 1. The scalar quantities (pressure and turbulence properties) are defined at the 
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- a = l  _______.p o = o  + 
Figure 1. Computational domain 

nodes which are located at the geometric cell centres. The velocity components U and u, are 
displaced in the x- and r-direction respectively following the staggered grid arrangement of 
Gosman and Ideriah.’ Two different mesh sizes with uniform distribution were used: 20 x 15 and 
15 x 13. No appreciable differences in the results were noted, and the results using the finer mesh 
are reported. 

3.2. Co-ordinate transformation 

The transformation maps the domain from the (x, r, t )  plane to the (5 ,  r, t )  plane (see Figure 1). 
The variable 5 specifies non-dimensional axial locations and assumes constant values at the west 
boundary of the domain (5=0 at x=O), at the boundary between the fluid region and the free 
surface region ( 5 =  tr at x=x,), and at the east boundary of the domain ( 5 =  1 at x=xs). The 
following relations hold between x and 5:  

Therefore 

where 
5 = X I  x + X z  7 



154 Z. ABDULLAH AND M. SALCUDEAN 

The relations to transform the variables 4(x, r,  t )  to &((, r, t)  are given as’ 

a4 34‘ 84 - 84’ 
ar ar ’ ax -xlzy -_ 

The grid velocity UG is interpolated on the basis of the conditions 

which yields’ 

where 

( l - a ) ( i , - i s )  i, 

5 ,  
+ O r - - ,  x 3  = t,- 1 

(9) 

The velocity relative to the grid, ti, is related to the velocity in the inertial frame, u, by 

u=u- U G .  (1 1) 

Multiplying both sides by p 4 ‘ ,  taking partial derivatives with respect to t, using (8) and 
rearranging gives’ 

The general transport equation is written in the inertial axisymmetric cylindrical co-ordinate 
system as5-* 

Substituting ( 5 )  and (6) and using (12) the following equation is obtained:’ 

By substituting u= 1 and then a=O in (3) and (9) it can be shown that’ 



FREE SURFACE FLOW DURING CYLINDER FILLING 155 

Substituting the above equation and the equality’ 

in (14) gives’ 

The first two terms of (17) vanish using (8) (see Appendix 11) and the following equation is 
obtained: 

Dividing by xl, dropping the bar and rearranging the terms yields the general transport equation 
in the transformed co-ordinate system: 

At this stage it is interesting to compare the general transport equation in the cylindrical co- 
ordinate system (equation (1 3)) and in the transformed cylindrical co-ordinate system (equation 
(18)). The differences in the two forms of the equation are (i) the axial (east-west) co-ordinate is in 
terms of the non-dimensional variable t instead of the dimensional variable x and (ii) the term x1 
appears in equation (18). Items (i) and (ii) are closely related. Equation (3) shows that 

(1 - < J / ( x r  - x,) for a= 0, 
for a = l  

is a simple linear transformation between x and 5 in the two regions of the domain shown in 
Figure 1. The product of the term l/xl with the non-dimensional co-ordinate 5 provides the 
actual axial co-ordinate x. When (18) is integrated over a control volume rdrdt(l), the term l/xl 
combines with the volume integral to provide the actual cell volume rdrdt(l)/Xl since d t  is non- 
dimensional.* The value of xl is determined using (19) and depends only on the grid geometry. 

3.3. Variables and governing equations 

The independent variables are the radial distance r and the axial distances x and 5 in the 
cylindrical and transformed cylindrical co-ordinate systems respectively. The dependent variables 
are the radial velocity u and the axial velocity ii. The axial velocity with respect to the inertial 
frame can be determined using (1 I) once U is known. 

There are five governing differential equations to be solved. These are well known6 and are the 
conservation of mass equation, two equations for the conservation of momentum (along the 
radial and axial directions) and two equations for the conservation of turbulence properties 
(turbulence kinetic energy and energy dissipation rate). 

The factor (1) in the cell volume specifies the angular dimension of the cell, which is taken as 1 radian. 
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Table I. Transformed source terms in the t, r, t system 

Table 11. Constants in the K--E model 

~~~ ~ 

1.44 1.92 009 1.0 1.3 

The equations mentioned above are written in the form of the general transport equation in the 
transformed co-ordinate system, equation (1 8), where I$ can represent different variables. The 
exchange coefficients l-+ and the source terms S ,  are given in Table I for different 6. 

The turbulent stresses are simulated using the effective viscosity concept. The effective viscosity 
is given as 

where the turbulent viscosity is expressed as 
Peff = P + Pt 9 (20) 

(21) pl = C, pK / E  . 
The volumetric rate of generation of the turbulence kinetic energy is given as1' 

G = Pt { 2[ (gy + (;y + (31 + [ ($) + (31' -f[Z +;+)]}. (22) 

The values of the constants in the K--E turbulence model, recommended by Launder and 
Spalding,15 are given in Table 11. 

3.4. Control volume equations 

The control volume equations for each variable are derived after integration of equation (18) 
over each volume with the appropriate assumptions about the distributions of the variables 
between the nodes. These procedures are quite standard and are detailed el~ewhere.~ - 9  The final 
form of the control volume equation is 

a&P=a~  4 N  + a A s  + ~ E # E  + aw 4 w  + S P &  + S U .  (23) 

In the above equation up, aN, a,, aE and a, represent the influence of the values of the 
neighbouring 4 on the nodal &value, &. The coefficient for the east neighbour, +E, for example, 
is written as9 

reAeX1/65,-(1/2)~ueAe for lPelS2, 
a E =  0 for Pe>2, 

- P e U e A c  for Pe<  -2, i 
using the hybrid differencing schemes to prescribe the variation of I$ between the nodes. 
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Equation (23) is established for all the nodal points in the domain. The ‘line-by-line’ method is 
used with the tridiagonal matrix algorithm for the solution of the control volume equations. The 
SIMPLE* algorithm is used, which is well known and is described elsewhere.’ 

3.5. Treatment of the axial momentum 

The computational grid expands along the axial (east-west) direction with a velocity specified 
by equation (8). The axial fluid velocity u with respect to the inertial co-ordinate system is the sum 
of the Eulerian component U computed on and with respect to the moving grid, and the 
Lagrangian component U,, which is the grid velocity: 

u=u+ u,. (25) 
The momentum of the fluid due to the Lagrangian velocity component UG has to be separately 
accounted for in the solution of the axial momentum equation. The control volume equation for 
the axial velocity with respect to the inertial frame is written as 

a,u,=C aiui+a;u;+su, (26) 
where c a p i  is the summation of the products of the nodal coupling coefficients ai with the 
nodal velocities ui for the north, south, east and west volumes, as shown in (23) for the general 
variable 4. 

The present computations are being carried out on a moving grid and the axial velocity with 
respect to the grid is U. Equation (26) therefore has to be written in terms of U. Substituting (25) 
in (26) yields 

Rearranging the above equation to the form of (26) yields 
a,(U, + U G p )  = &(li + UGi) + a;(U; + UEP) + s u  . (27) 

a,u, = 1aiui + + su ,  (28) 

S u = S u + C a ~ ( U G c - U G p ) + a ~ ( U G w  -UGp)+a;(UEp-UGp)]  * (29) 

(30) 

- 

where is written as9 
- 

The axial momentum equation therefore has additional source terms 

S ~ L = C ~ , ( U G =  - U G p ) + a d U G w  -Ucip)+ a;(&p - ut3p)I 
to account for the momentum generated by the velocity component due to the moving grid. The 
above terms can be determined explicitly using (8), since they depend on the local grid velocity 
and the nodal coupling coefficients. 

3.6. Free surface boundary conditions 

The boundary conditions at the free surface are that the normal and tangential stresses are 
zero.19~20 Following the approach of Hirt and Shannon,” this condition can be written for a 
two-dimensional case as 

au ao 
P-2p [ n n x;: -+nn,n, (ar  -+- a,) + n n -  4 =O, 

* Semi-Implicit Method for Pressure-Linked Equations. 
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where n, and n, are the components of the normal, and m, and m, are the components of the 
tangent to the surface. Assuming that the slope of the surface is small, it can be shown thatg 

n, z 0, n,x 1, (33) 

P X O ,  (34) 

and neglecting the viscous terms, (31) and (32) simplify to” 

av 
ax 
- X O .  (35) 

3.7. Imposition of the boundary conditions near the free surface 

The computational domain is shown in Figure 1. The free surface is expected to occur in the 
‘free surface region’, therefore it is tracked only in this region. The surface shape is approximated 
in a ‘stepwise manner’ and special boundary conditions are imposed at the cells in the vicinity of 
the free surface. 

Each computational cell is indexed using a variable ‘ISUR, the value of which determines 
whether the cell is treated as ‘empty’ or ‘full’, or if the free surface passes through it (see Figure 2). 
Table 111 summarizes the boundary conditions imposed on the computational cells in the vicinity 

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Y 
n 

FLUID - L l  
ISUR-3 

Figure 2. Cells in the free surface zone 

Table 111. Boundary conditions for the different cell types 

ISUR, Boundary condition 

0 
1 
2 
3 No boundary conditions required 

Impose zero u, v,  P, no continuity 
Impose zero u, u, P s = f p u , ( u , ( .  free slip for ui-,, no continuity 
Impose Ps=$puslu,I, free slip for oil no continuity 
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of the free surface. The conditions are applied by the manipulation of the coefficients ai and source 
terms in the algebraic equation’ 

( u p  - S ~ ) 4 p  = a n 4 n  + as4s + a e 4 e  + a w 4 w  + SU, (36) 

which is obtained after the integration and discretization of (18). The nodal pressures for 
ISUR= 1 and ISUR=2 are imposed assuming that the momentum of the fluid in the vertical 
direction is recovered in the hydrostatic pressure. 

3.8. Tracking the free surface 

The gravitational acceleration is accounted for in the computations, therefore the nodal 
pressures include the hydrostatic component. The free surface is tracked during the iterative 
process by searching for the ‘zero’-pressure profile in the domain. At the beginning of each 
iteration the nodes in the free surface zone are indexed on the basis of the spatial location of the 
free surface. The free surface shape for the initial iteration of each time step can be obtained from 
either (a) an assumption of a flat surface, (b) experimental data or (c) a previous time step 
solution. The algorithm to track the free surface can be summarized as follows. 

1. The scalar cell pair containing the free surface in each row is identified by locating the zero- 

2. The free surface location is interpolated within the cell pair and cells in the row are indexed. 
3. Steps 1 and 2 are repeated for each row of cells. 
4. The procedure is repeated A t  each iteration. 

pressure location. 

The free surface shape is updated on the basis of the nodal pressures by the steps outlined 
above. As convergence is approached the nodal pressures and the nodal indices become more and 
more ‘compatible’ and eventually at convergence further corrections of the nodal indices (or the 
free surface shape) are not required. 

The conservation of mass and other properties is verified on a cell-by-cell basis and the 
conservation of mass is used for the computation of the pressure correction. This verification is 
not carried out in empty cells and in cells through which the free surface is passing because the 
actual location and orientation of the surface is not known. It should be emphasized that global 
conservation as well as conservation in the full cells is satisfied. 

3.9. Other boundary conditions 

The boundary conditions applied at the side walls and bottom surface are zero normal 
and tangential velocities. Therefore, for the north and west boundaries of the domain shown in 
Figure 2, 

ulX= ,=O for r o 2 r > r i ,  ul,=,=O for r , 2 r > r i .  

A zero-gradient and zero-normal-flux condition is applied at the south boundary of the 
domain (Figure 2), which models the axis of symmetry: 
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The inlet condition is imposed at the west boundary for I 4 ii . The inlet velocity varies with the 
level of fluid in the test section. Therefore 

~ l r < r c  = U i n ,  (40) 
where uin is the average inlet velocity and is an experimental parameter. The velocity profile is 
assumed to be uniform at the inlet. 

The properties of pure water at 25°C (p  = 997 kg Inv3, p = 8.94 x kg/ms) are used. 

4. DISCUSSION 

Figures 3 and 4 illustrate typical results at different times during the simulation. The inlet jet 
penetrates from the bottom of the test section, flows towards the top and forms a spout at the free 
surface. The fluid then flows radially outwards and forms a vortex under the free surface. The 
height of the spout decreases with the increase in the level of fluid in the test section. This is to be 
expected since a greater portion of the momentum of the jet is redistributed in the fluid with the 
increase of the level. The free surface shape is predicted to be fairly flat with the exception of the 
spout during the initial stages of filling. Figure 5 shows the computed and experimental free 
surface shapes. It can be seen that in general the proposed method predicts the free surface shape 
quite well. The predictions at the initial time steps are less accurate because of the incorrect initial 
condition of a flat surface profile. 

, I . . . # ,  
. I . . . . ,  

I . . .  - .,,, ,... - ..,. ........, 

Figure 3. Velocity, turbulent energy and effective viscosity at time 4s, level 0.059rn 
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Figure 4. Velocity, turbulent energy and effective viscosity at time 11 s, level 0.119m 

Figure 5. Experimental and computed free surface profiles 
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Typical contour plots of the turbulent kinetic energy and effective viscosity are also shown in 
Figures 3 and 4. The turbulent kinetic energy contours have been normalized to uk where uin is 
the inlet velocity. The highest values of the turbulent kinetic energy are in the regions where the 
jet spreads into the fluid and in the vortex. The effective viscosity contours have been normalized 
to the laminar viscosity. The effective viscosity is high in the regions of steep velocity gradients 
and is between two to three orders of magnitude greater than the laminar viscosity. 

Figures 6-9 show the computed velocity distributions and the photographs obtained during 
the filling process. The photographs contain a large number of streaklines; however, only a small 
fraction of these can be used to determine the velocities. Particles which enter or leave the light 
plane during the exposure period leave tapered streaklines, which cannot be used for the 
interpretation.’ Computations were done using both the free slip condition and the free surface 
treatment. The plotting scales of the computed velocities are the same as those on the experi- 
mental photographs, so that an arrow and a streakline of the same length represent the same 
velocity magnitude. The following observations can be made. 

(a) In general, for both the free surface and the free slip conditions, the computed location of 
the vortex appears to be closer to the surface than observed in the experiments. Figure 10 shows 
the computed and measured radial locations of the vortex. It may be seen that the computations 
with the free slip condition incorrectly predict the vortex to be further from the axis than observed 
experimentally. The radial position of the vortex is predicted very well when the free surface 
condition is used. The inlet jet impinges on a pseudo-frictionless wall when the free slip 
condition is used, which causes the jet to be thicker and forces the fluid radially outwards. This 
results in an overestimation of the radial velocities and causes the vortex to be radially further 
from the axis than observed experimentally or computed with the free surface condition. 

- 
0.15 m/s 

Figure 6. Experimental streakline photographs and computed velocity fields at time 4 s, level 0.059 m 
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Figure 7. Experimental streakline photographs and computed velocity fields at time 7.5 s, level 0.090 m 
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Figure 8. Experimental streakline photographs and computed velocity fields at time 15.5s. level 0151 m 
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3 

Figure 9. Experimental streakline photographs and computed velocity fields at time 2 0 5 s ,  level 0.180m 
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Figure 10. Computed and measured radial positions of the vortex 

Figure 10 shows that the vortex radial location is predicted very accurately when the free 
surface condition is used. 

(b) The angle of the jet appears to be too large if the free slip condition is used, since the fluid is 
more constrained and higher pressures occur at the surface. In the case of the free surface 
conditions, however, the jet angle appears to be much closer to the experimental observations, as 
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shown in Figures 6,8 and 9. The jet angle cannot be determined because of the recirculatory flow 
pattern; however, a quantitative estimate can be obtained from the radial position of the vortex. 
Figure 10 shows that the radial position of the vortex (and therefore the jet angle) is consistently 
well predicted when the free surface condition is used. The larger jet angle causes the vortex to be 
at a greater radial distance when the free slip condition is used. The velocities predicted in the 
region of the spout also agree well with the experimental measurements, as evident in Figure 7. 

(c) The higher radial velocities near the surface with the free slip condition also result in higher 
axial velocities near the walls and radial velocities at the bottom. These higher velocities are 
apparent in Figures 6 and 9 and would produce erroneous results in heat transfer computations. 
These higher velocities are a major source of d i s c r e p a n ~ y ~ ' - ~ ~  between the computed and 
experimental results. 

(d) In general it appears that the computed velocities are somewhat lower in magnitude as 
compared to the experimental results. A reason for this may be the effects of false diffusion of the 
momentum, since most of the flow in the vortex is inclined to the mesh. The false diffusion can 
somewhat suppress the overestimated velocities obtained with the free slip condition, with the 
result that in some cases the free slip condition appears to produce better results in some regions 
of the domain owing to compensation of errors. 

5. CONCLUSIONS 

Mathematical treatments have been developed to treat rising levels of fluids bounded by a free 
surface using the Control Volume approach. The methods preserve the implicit nature of the 
numerical technique and therefore should be more economical than the traditional Marker and 
Cell approach. A comparison of the computed results and experimental data indicates that the 
proposed method performs better than the widely used free slip assumption. 
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APPENDIX I: NOMENCLATURE 

nodal coupling coefficients 
control volume facial area 
constants in the K--E model 
acceleration due to gravity 
turbulence kinetic energy 
tangent to the free surface 
normal to the free surface 
pressure 
surface pressure 
cell Peclet number defined as puhx/p where 6x is a characteristic cell dimension 
radial distance 
source term 
component of the linearized source term 
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s u  
t time 
u, 0 
UG grid velocity 
X axial distance 

component of the linearized source term 

axial and radial velocity 

Greek symbols 

a 
x 
st 
r 

4 

t 

& 

P 

OK 
OE 

c1 

Subscripts 

eff 
i 

1 
n, s, e, w 

1 

0 

P 
r, x 
S 
t 
4 

Superscripts 

( Y  
0” 
( - )  

indicates fluid region (a = 1) and free surface region (a = 0) 
temporary variable 
normalized axial distance between a node and its neighbour 
energy dissipation rate 
diffusion exchange coefficient 
density 
general variable 
constant in the K--E model 
constant in the K--E model 
normalized axial distance 
viscosity 

effective 
index for north, south, east, west 
used with r for inlet radius 
indicates the boundary between the fluid region and the free surface region 
north, south, east, west 
used with r for outer radius of cylinder 
scalar point 
radial and axial directions 
indicates the upper limit of the cylinder height which the free surface can reach 
turbulent 
denotes association with appropriate variable 4 

indicates transformed space 
indicates previous time step solution 
relative to the grid 

APPENDIX I1 

The objective is to demonstrate that the first two terms of (17) vanish. These terms are 

and can be written as 
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Substituting - i l / x l  from (15) in the above expression yields 

Recall (8) as 

u G = x 3  5 + x4 * 

Comparing (43) with expression (42) it may be seen that if 

then (42) will vanish. x4 is given by (10) as 

and the time derivatives of xl and x z ,  defined by (3) and (4) respectively, are 

Let 

Substituting a= 1 in (3), (4)’ (45) and (46) yields 

x 2  = 0’ 1 2  =o. 
Substituting xl, il ,  x 2  and iz from the above in (47) gives for a= 1 

A=O. 

Also, from (10) it is obvious that for a = 1 

x4 = 0. 

Therefore A = x4 and (44) is valid for a = 1. 
Substituting a=O in (3), (4), (43, (46) and (10) yields 

( 1 - 1  

(1 - 51) (4 -  i s )  

(xI-xs)2 ’ 

x 1 = - 3  

XI - xs 

11 = 
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Substitution of xl, xz, i1 and iz in (47) and algebraic manipulation yields for a=O 

where the numerator can be factored as (xf - ~ , ) ( 5 ~ i ,  - if), and further simplification yields 

which is identical to (48). It has therefore been shown that for the entire domain (a = 1 and a =0) 

Hence expression (41) will vanish by virtue of (42) and (44) as discussed earlier in this appendix. 
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